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Correlation functions with multiple scaling regions occur in the description of the fluctuations in the center
of pressure during quiet standing. Postural sway is modeled as an inverted pendulum with a delayed feedback
constructed such that for deviations beyond a spatial threshold a constant restoring force is engaged. In the
absence of noise, two stable limit cycles coexist. The correlation function depends on the added noise intensity:
at intermediate noise levels three scaling regions appear whereas only two occur for high noise levels. Our
observations suggest that correlation functions with multiple scaling regions reflect noise-induced transitions in
bistable dynamical systems.@S1063-651X~96!00112-2#

PACS number~s!: 87.10.1e, 05.40.1j, 02.30.Ks

The human nervous system operates in a very noisy envi-
ronment and hence noise-induced transitions are likely to
play a major role in shaping its dynamics@1,2#. In multi-
stable dynamical systems noise can induce transitions be-
tween different attractors@2,3#. Multistability readily arises
in mathematical models with time-delayed feedback@4#, in-
cluding those which describe neural control mechanisms@5#,
and has been observed experimentally in neural circuits con-
structed from invertebrate neurons@6#, in model electronic
circuits@7#, and in optical dye laser experiments@8#. Here we
draw attention to the observation that noise-induced transi-
tions in multistable dynamical systems can lead to correla-
tion functions characterized by the presence of multiple scal-
ing regions.

To illustrate our findings we examine the fluctuations
which occur in the center of pressure~COP! during quiet
standing@9–11#. These dynamics are not chaotic, but are
indistinguishable from correlated noise and can be modeled
as bounded, correlated random walks@10,12#. The two-point
correlation function measured in either the back to front or
side to side direction,x, K(Dt)5^[x(t)2x(t1Dt)] 2&,
where the brackets indicate a time average along a single
trajectory andDt is the time increment@9,13#, typically con-
tains three regions~Fig. 1!. Since for a correlated random
walk we have the scaling laŵK(Dt)&;Dt2H, where
0,H,1 is a scaling exponent@14#, this observation suggests
the presence of multiple scaling regions@9–11#.

We model human postural sway by the movement of an
inverted pendulum which is subjected to both noisy pertur-
bations and a time-delayed restoring force@15#, i.e.,

mR2f̈1gḟ2mgRsinf5 f̃ „f~ t2t8!…1A2d̃j~ t !, ~1!

wherem is the mass~center of mass located at a distanceR
from the ground!, g is the gravitational constant,g is the
damping coefficient,f is the tilt angle~f50 corresponds to
the upright position, hence the ‘‘2’’ sign!, andA2d̃j(t) is
d-correlated Gaussian noise of intensityA2d̃. Once a dis-
placement occurs, the application of the restoring force is

delayed by a timet8 as a consequence of finite neural con-
duction and processing times and neuromuscular response
times @12,16#. Since postural sway control mechanisms are
overdamped for healthy subjects with eyes open@11,17#,
gḟ@mR2f̈, we can rewrite~1! for small displacements in
the x direction as

ẋ5ax1A2dj~ t !1 f „x~ t2t8!…, ~2!

wherea5mgR/g.0 is a rate constant,x5R sinf, andd, f
are the rescaledd̃, f̃ .
During postural sway movement occurs primarily at the

ankle joint. Information concerning joint position is detected
by threshold-type sensory neurons, i.e., the neurons only be-
come activated once joint angle exceeds a certain value@18#.
Thus the postural sway feedbackf operates by allowing the
system to drift for small displacements~open loop control!
with stabilizing negative feedback~closed loop control! only
becoming significant for sufficiently large displacements
~times! @9,10,12#. A possible choice off which is consistent
with these observations can be constructed from sigmoids of
the form f (x)51/(11e2bx). Figure 2 plotsẋ versusx for
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FIG. 1. Plot of the COP two-point correlation functionK(Dt)
versus time intervalDt for a healthy 21 year old female~height
1.63 m, weight 63.5 kg!. Vertical lines segmentK(Dt) into differ-
ent scaling regions:~from left to right!, H;0.86,H;0.29,H;0
@11#.
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f ~x!5cH 12
1

11e2b~x2u!2
1

11e2b~x1u! J , ~3!

wherec,u are constants for different values ofb. For small
displacements from the vertical the restoring force is small
~‘‘open loop control’’!, for larger displacements the restoring
force stabilizes the upright position~‘‘closed loop control’’!,
and for sufficiently large displacements the restoring force is
incapable of stabilizing the upright position and the swayer
topples over.

Joint position receptors typically discharge maximally
within a very small range of angles@19#. For largeb we
approximatef by the piecewise constant approximation~dot-
ted line in Fig. 2!, i.e.,

f5 H 0 if x<u
2c if x.u. ~4!

After rescalingx and t, ~2! reduces to

ẋ5H x1A2Dj~ t !1C if x~ t2t!,21

x1A2Dj~ t ! if 21<x~ t2t!<1

x1A2Dj~ t !2C if x~ t2t!.1,
~5!

wheret5at8, C5c/au, andD5d/a2u2.
In the absence of noise,D50, the solution of~5! is

x~ t !5H 2C1@x~ t0!1C#exp~ t2t0! if x~ t2t!,21
x~ t0!exp~ t2t0! if 21<x~ t2t!<1
C1@x~ t0!2C#exp~ t2t0! if x~ t2t!.1.

~6!

The dynamics of~5! can be readily determined from~6! with
the help of Fig. 2. In the following, we take initial conditions
ux(s)u<1, sP@2t,0#.

Figure 3 shows the bifurcation diagram of~5!. No stable
fixed point solutions can occur~Fig. 2!. However, three dif-
ferent stable limit cycle solutions arise, denoted by
O1,O2,O3 ~Figs. 3, 4! @20#. Bounded solutions occur only
for C>1; otherwise,ẋ.0 for x.0 andẋ,0 for x,0, which
results in an immediate escape for almost all initial condi-
tions. The region in the parameter space where bounded so-
lutions exist is specified by two conditions. First, letx(t0)51
and 0<x(s)<1 for sP[ t02t,t0]; then for a solution to have
an upper boundary, we must havex<C at t5t, i.e.,

t<ta~C![ ln~C! ~7!

~see Fig. 3!. Second, in order to obtain a condition for the
solution to have a lower boundary, letx(t0)51 and

1<x(s)<C for sP[ t02t,t0]. Assume further that at time
t1 :5t01t, 2C<x<21. Then there exists a time
t*P[ t0 ,t1] such that21<x(s)<1 for sP[ t0 ,t* ]. The re-
quirement thatx(t)>2C at timet*1t leads to the condition

t<td[ ln
2C2

C221
~8!

~see Fig. 3!. Due to the symmetry of~5!, the same conditions
arise if x(t0)521.

The stable limit cycleO1 ~Fig. 4 top! encircles11 with
x.0 for all time@21#. From~5! it can be seen thatO1 occurs
whenC, t satisfy ~Fig. 3!

t,ta~C! and 0,t,tb~C![ ln
C

C21
. ~9!

FIG. 2. Plot ofẋ versusx for ~6! as a function ofb ~proportional
to the gain! in the feedback control described by~3! ~solid line!. A
piecewise linear approximation used in~6! is represented by the
dotted line.c52, u51, b151, b255, b3510. FIG. 3. Steady state behavior of~6! in the absence of noise.

Oscillations of the type shown in Fig. 4 top occur for choices ofC
andt in the region labeled ‘‘O1’’; of the type in Fig. 4 middle in
the region labeled ‘‘O2,’’ and of the type shown in Fig. 4 bottom in
the region labeled ‘‘O3.’’ There are also different kinds of unstable
solutions~the swayer falls! which are designated asE in the bifur-
cation diagram and are not discussed further.
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This limit cycle coexists with another~2O1! that encircles
21 with x,0 for all time. Thus we have bistability; the
solution which is observed depends on the choice of the
initial condition.

The system shows two more qualitatively different limit
cycles,O2 and O3, each of which enclose61 ~Figs. 4
middle and bottom!. The conditions forO2 andO3 to occur
are, respectively,

t,ta~C! and tb~C!,t,tc~C![ ln
C11

C21
~10!

and

tc~C!,t,td~C! ~11!

~Fig. 3!. Bistability arises also in these cases. However, the
coexisting orbits~2O2 and2O3! are identical in shape to,
respectively,O2 andO3; they differ only by a phase shift.
We do not considerO2 andO3 further. By comparing~7!
and ~8! to ~9!–~11! it is clear that no other solutions, e.g.,
chaotic trajectories, can arise in~5!.

WhenC, t correspond to cases in which the limit cycles
O1 and2O1 coexist, noise can induce transitions between
two qualitatively different attractors. Figure 5 shows the two-
point correlation functionK(Dt) as a function of the noise
intensityD. For low noise levels,K(Dt) shows oscillations.

For intermediate noise levels,K(Dt) contains three regions
and is identical to that observed experimentally. From the
model we obtaint8;230 msec andu;6 mm, which agree
remarkably well with those values observed experimentally,
respectively, 200–300 msec@16# and 5–6 mm@18#. Finally,
as the noise intensity increases the three regions become less
distinct and finally disappear at high noise levels.

We conjecture that there are two essential features to pro-
duce a correlation function with multiple scaling regions:~1!
two or more coexisting limit cycle attractors in which tran-
sitions between attractors occur only at certain phases of the
cycle ~e.g., minimum ofO1 in Fig. 4 top!; and ~2! noise of
sufficient intensity to cause transitions between the attractors
at not too high a rate. The vertical line in Fig. 5 shows that
the break between the first two scaling regions inK(Dt)
occurs just before the period of the oscillation for the noise-
less case. ForDt shorter than one period of the limit cycle,
transitions occur only in one direction between basins of
attraction, e.g., 1→2. These transitions are reflected by an
increase inK(Dt). ForDt longer than the period of the limit
cycle, transitions of the form 1→2→1 begin to occur and
K(Dt) increases less rapidly. Finally for longDt, it becomes
equally probable that the swayer is in either basin of attrac-
tion andK(Dt) reflects the mean displacement.

To test this hypothesis we studied the Mackey-Glass
equation@24# with an additive noise input

ẋ52ax1
bx~ t2t!

11x~ t2t!n
1A2dj~ t !, ~12!

where a,b,n are positive constants. Whenn is even and
d50, this equation is invariant under the transformation
x(t)→2x(t) and hence there is bistability@7#: if x(t) is a
limit cycle solution of ~12! then so is2x(t). Numerical
simulations indicate that the two-point correlation for this
system exhibits qualitatively the same behavior as our model
for postural sway~data not shown!.

Experimentally the situation with three scaling regions is
most often seen@9–11#; however, for some subjects three
regions are less apparent and for others oscillations occur
@12#. Here we have shown that the shape ofK(Dt) depends

FIG. 4. Three types of oscillations predicted by~5!. In all cases
t50.6. Values forC are top,C522.1; middle,C52.9; bottom,
C54.5.

FIG. 5. Two-point correlation functions of the unscaled version
of ~5! for different values of noise intensity. Top:d50.166
mm2 sec22; middle: d50.625 mm2 sec22; bottom: d51.020
mm2 sec22. In all cases,a50.60 sec21, u55.95 mm, c519.67
mm sec21, t85233 msec. Diamonds show experimental data taken
from Fig. 1.
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on three parameters: the time delayt, the strength of the
feedbackC, and the noise intensityD @22#. From Fig. 3 it is
clear that it should be possible to change the shape ofK(Dt)
by altering these parameters, e.g., drinking alcohol to altert
@23#; holding a weight over the head to raise the center of
gravity to altera and hencet,C,D; adding noisy perturba-
tions to the pressure platform to alterD.

The study of noise-induced transitions in stochastic delay
differential equations has only begun to receive attention@3#.
A variety of routes and mechanisms for noise-induced tran-
sitions can occur. Moreover, transitions can involve new
states created by the addition of noise to the system@25#, i.e.,
states which were not present in the absence of noise. Thus it

is possible thatK(Dt) can have a shape which is more com-
plex than we have considered here. Our results should alert
the experimentalist to the possible connection between a cor-
relation function with multiple scaling regions to an under-
lying multistable dynamical system in which noise-induced
transitions are occurring.
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@15# F. Schürer, Math. Nachr.1, 295 ~1948!; U. an der Heiden, J.
Math. Biol. 8, 345 ~1979!.

@16# M. H. Woolacott, C. von Hosten, and B. Ro¨sblad, Exp. Brain
Res.72, 593 ~1988!.

@17# S. A. S. Werness and D. J. Anderson, Biol. Cybern.51, 155
~1984!.

@18# M. G. Gilsin, C. G. Van den Bosch, S-G. Lee, J. A. Ashton-
Miller, N. B. Alexander, A. B. Schultz, and W. A. Ericson,
Age Aging 24, 58 ~1995!; C. G. Van den Bosch, M. G. Gils-
ing, S.-G. Lee, J. K. Richardson, and J. A. Ashton-Miller,
Arch. Phys. Med. Rehabil.76, 850 ~1995!.

@19# P. Griggs and B. J. Greenspan, J. Neurophysiol.40, 1 ~1977!;
Handbook of Physiology, Volume 1: Excitable Cells and Neu-
rophysiology, edited by H. D. Patton, A. F. Fuchs, B. Hille, A.
M. Scher, and R. Steiner~Saunders, Philadelphia, 1989!.

@20# Bistability also exists for~2! when f is composed of smooth
sigmoidal functions such as~3!. The behavior depends on the
value ofb. For smallb there is the coexistence of two stable
fixed points. For sufficiently largeb these fixed points become
unstable and are replaced by stable limit cycles. Numerical
simulations suggest that the dynamics which occur for largeb
are qualitatively similar to those predicted to occur from the
piecewise constant approximation.

@21# The period of the oscillation isT152t1 ln$(C21)/(C
21)exp(2t)1C2@12exp(t)#%.

@22# Three scaling regions have been reproduced in a stochastically
driven pinned polymer model for postural sway in which the
stochastic forcing itself has a power-law scaling over short
times @11#.

@23# M. H. Woollacott, Exp. Neurol.80, 55 ~1983!.
@24# M. C. Mackey and L. Glass, Science197, 287 ~1977!.
@25# W. Horsthmenke and R. Lefever,Noise-induced Transitions:

Theory and Applications in Physics, Chemistry and Biology
~Springer-Verlag, New York, 1984!; A. Lasota and M. C.
Mackey,Chaos, Fractals and Noise: Stochastic Aspects of Dy-
namical Systems~Springer-Verlag, New York, 1994!.

6684 54CHRISTIAN W. EURICH AND JOHN G. MILTON


